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An analysis for solving boundary value problems in structural mechanics which was
proposed by Wang and Lin (1996 Journal of Sound and<ibration 196, 285}293; 1999 Journal
of Applied Mechanics 66, 380}387) [1, 2] has been extended to the calculation of the
eigenfrequencies of an orthotropic plate under all free boundary conditions. The
convergence of the series solution is assured and the procedure leads to pointwise exact
solutions. The calculated eigenfrequencies have been veri"ed by a di!erent approach and
indicate that the present method is simple and e!ective.

( 2001 Academic Press
1. INTRODUCTION

Vibrations of plates have been frequently studied. While Chladni [3] pioneered
experimental investigations, Navier and Levy obtained analytical solutions for special
boundary conditions [4]. Unfortunately, there exists no closed-form solution for the case of
a rectangular plate with all free boundary conditions, but several approximate methods
have been proposed. Warburton [5] used characteristic beam vibration functions in
Rayleigh's method [6] to obtain a useful and simple approximate expression for the natural
frequencies of vibration of thin, isotropic plates. His work was extended by Hearmon [7]
and applied to specially orthotropic plates, and by Dickinson [8], who included the e!ect of
uniform direct, in-plane loads. Warburton's expression and its generalizations, together
with a table permit the straightforward calculation of the natural frequencies of plates
having any combination of free, clamped, or simply supported edges. However, should one
or more free edges exist then the accuracy of the frequencies can be signi"cantly diminished.
Kim and Dickinson [9] provided an improved approximate expression, where they use
Rayleigh's method but in combination with the minimum potential energy theorem. Iguchi
[10] gave solutions of an isotropic rectangular plate. However, the determination is limited
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to square plates only. Rajalingham et al. [11] reduced the plate vibration equation to
simultaneous ordinary di!erential equations. However, only the results for plate
characteristic function parameters for clamped rectangular isotropic plates are given. Liew
and Lam [12] determined the vibration analysis of point-supported rectangular plates,
based on the Rayleigh}Ritz approach and a Gram}Schmidt set of orthogonal plate
functions. An approximate method was proposed, which is applicable to a wide range of
arbitrarily distributed point-supported plate problems with any combination of classical
boundary conditions. Leissa [13] presented comprehensive and accurate analytical results
for the free vibration of rectangular plates. Leissa applied the Ritz method [14] and
compared the results with the method of Warburton [5], although his work is limited to
isotropic plates. Leissa's work was extended by Deobald and Gibson [15], who also applied
the Rayleigh}Ritz method to orthotropic plates. Gorman [16, 17] solved the di!erential
equation for isotropic as well as orthotropic plates using a superposition method, which
allows the boundary conditions to be met with desired accuracy.

Wang and Lin [2] presented a systematic analysis for solving boundary value problems
in structural mechanics, where a weighted residual form of the di!erential equations is used
with sinusoidal weighting functions. An overview of techniques of weighted residuals is
given in reference [18].

The approach of the present paper generalizes the proposed method by Wang and Lin
[2] by treating the vibration of orthotropic plates. The exact series solution is derived and
the results are applied to an orthotropic plate with speci"c material and geometrical
properties. A discussion of the results is given.

2. EXACT SERIES SOLUTION

Consider the classical Kirchho! plate theory. The governing equation of motion for an
unloaded plate with thickness h is

L2M
xx

Lx2
#2

L2M
xy

Lx Ly
#

L2M
yy

Ly2
#oh

L2w

Lt2
"0, (1)

where M
xx

, M
yy

and M
xy

are stress couples, w the out-of-plane displacement and o the plate
density. Weighting with cos a

m
x cos c

n
y, where a

m
"mn/a and c

n
"nn/b and integration

with respect to the plate area a]b gives

P
a

0
P

b

0
A
L2M

xx
Lx2

#2
L2M

xy
Lx Ly

#

L2M
yy

Ly2
#oh

L2w

Lt2 B cos a
m
x cos c

n
ydydx"0, (2)

where the "rst term of the integral can be integrated by parts as

P
a

0
P

b

0

L2M
xx

Lx2
cos a

m
x cos c

n
ydy dx"!a2

m P
b

0
P

a

0

M
xx

cos a
m
x cos c

n
y dxdy

#P
b

0

cos c
n
y C(!1)m

LM
xx

Lx K
x/a

!

LM
xx

Lx K
x/0
Ddy (3)



CALCULATING EIGENFREQUENCIES OF PLATES 749
and the third term of the integral as
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The second term is split into two parts. The "rst part considers the partial derivative with
respect to x "rst
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while the second part considers the partial derivative with respect to y "rst
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The boundary conditions of a free plate are
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and the separation of variables w(x, y, t)"= (x, y) exp (iut) for steady state vibration with
circular frequency u leads to
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Using the constitutive equations for orthotropic plates, where the principal directions of
orthotropy are parallel to the plate edges, leads to the moment curvature equations
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Equation (11) is given in terms of the de#ection shape=:
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in which E
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are Young's moduli in the x and y directions respectively, G
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is the
shear modulus, and l
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are the Poisson ratios. Substituting equations (12}14) in
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where prime and asterix denote those coe$cients associated to the partial derivative of
= with respect to x and y respectively. Assuming the general solution in the following form
so that rigid-body motions are included
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and computing the double integral

P
b

0
P

a

0

=cos a
m
x cos c

n
ydxdy"P

b

0
P

a

0
A
F
00
4

#

=
+

m/1

F
m0
2

cos a
m
x

#

=
+
n/1

F
0n
2

cos c
n
y#

=
+

m/1

=
+
n/1

F
mn

cos a
m
x cos c

n
yB cos a

m
x cos c

n
ydxdy

"

=
+

m/0

=
+
n/0

F
mn

ab

4
(23)

to be used in equation (17) gives
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where c"1 and !1 correspond to the symmetric and antisymmetric vibration modes
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Figure 1. Vibration modes.
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3. EXAMPLE

In this section the previously derived expressions are applied to a speci"c orthotropic
plate with the geometrical and material properties shown in Table 1.

The calculated eigenfrequencies of this plate using the present method compared with the
values calculated by the superposition method [16, 17] are shown in Table 2. It is obvious
that the discrepancies are less than 0)05 per cent indicating excellent agreements. Figure 1



TABLE 1

Dimensions and material properties of the plate

a, b (m) h (m) o (kg/m3) E
x

(GPa) E
y
(GPa) G

xy
(GPa) l

x

0)254 0)001483 1584 127)9 10)27 7)312 0)22

TABLE 2

Natural frequencies of free}free orthotropic plate

Mode 11 02 12 03 20 13 21 22

Superposition 51)76 60)17 121)4 165)9 212)6 228)6 236)6 304)9
Exact series 51)74 60)17 121)4 165)9 212)6 228)5 236)5 304)8

758 S. HURLEBAUS E¹ A¸.
shows the corresponding eigenmodes of the orthotropic square plate with completely free
boundaries.

4. CONCLUSIONS

The present paper shows that the eigenfrequencies of an orthotropic rectangular plate
with completely free boundaries can be calculated by an exact series solution. The method is
based on a weighted residual scheme for the classical thin plate equation. The advantages of
the method are that the results converge quickly and can be calculated with the desired
accuracy; and after "nishing the analytical derivation for the frequency determinant the
calculation of eigenfrequencies and vibration modes for given material data and geometry
becomes straightforward. The analysis approach is very convenient for sensitivity studies.
As the analytical solutions for the calculation of eigenfrequencies and modes are of
paramount importance for many applications such as the identi"cation of constitutive
parameters from experimental plate testing [20], the present method of analysis provides an
e$cient procedure for accurate results which should be of academic and practical
importance.

REFERENCES

1. J. T.-S. WANG and C.-C. LIN 1996 Journal of Sound and<ibration 196, 285}293. Dynamic analysis
of generally supported beams using fourier series. doi: 10.1006/jsvi.1996.0484.

2. J. T.-S. WANG and C.-C. LIN 1999 Journal of Applied Mechanics 66, 380}387. A method for exact
series solution in structural mechanics.

3. E. E. F. CHLADNI 1802 Die Akustik. Leipzig.
4. K. F. GRAFF 1991 =ave Motion in Elastic Solids. New York: Dover Publications Inc.
5. G. B. WARBURTON 1954 in Proceedings of the Institution of Mechanical Engineers 168, 371}384.

The vibration of rectangular plates.
6. J. W. S. RAYLEIGH 1945 ¹he ¹heory of Sound. New York: Dover Publications Inc.
7. R. F. S. HEARMON 1959 Journal of Applied Mechanics 26, 537}540. The frequency of #exural

vibration of rectangular orthotropic plates with clambed or supported edges.
8. S. M. DICKINSON 1978 Journal of Sound and <ibration 61, 1}8. The buckling and frequency of
#exural vibration of rectangular isotropic and orthotropic plates using Rayleigh's method.



CALCULATING EIGENFREQUENCIES OF PLATES 759
9. C. S. KIM and S. M. DICKINSON 1985 Journal of Sound and <ibration 103, 142}149. Improved
approximate expressions for the natural frequencies of isotropic and orthotropic rectangular
plates.

10. S. IGUCHI 1953 Ingenieur-Archiv 21, 303}322. Die Eigenschwingungen und Klang"guren der
vierseitig freien rechteckigen Platte.

11. C. RAJALINGHAM, R. B. BHAT and G. D. XISTRIS 1997 Journal of Sound and <ibration 203,
169}180. Vibration of rectangular plates by reduction of the plate partial di!erential equation
into simultaneous ordinary di!erential equations. doi: 10.1006/jsvi.1996.0814

12. K. M. LIEW and K. Y. LAM 1994 Journal of Sound and <ibration 174, 23}36. E!ects of arbitrarily
distributed elastic point constraints on vibrational behaviour of rectangular plates. doi:
10.1006/jsvi.1994.1259

13. A. W. LEISSA 1973 Journal of Sound and <ibration 31, 257}293. The free vibration of rectangular
plates.

14. W. RITZ 1909 Journal fuK r reine und angewandte Mathematik 135, 1}61. UG ber eine neue Methode
zur LoK sung gewisser Variationsprobleme der mathematischen Physik.

15. L. R. DEOBALD and R. F. GIBSON 1988 Journal of Sound and <ibration 124, 269}283.
Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh}Ritz
technique.

16. D. J. GORMAN 1993 Journal of Sound and<ibration 165, 409}420. Accurate free vibration analysis
of the completely free orthotropic rectangular plate by the method of superposition. doi.
10.1006/jsvi.1993.1267

17. D. J. GORMAN 1999 <ibration Analysis of Plates by the Superposition Method. Singapore: World
Scienti"c Publishing.

18. L. GAUL and CH. FIEDLER 1996 Methode der Randelemente in Statik und Dynamik.
Wiesbaden/Braunschweig: Friedrich Vieweg & Sohn.

19. I. N. BRONSTEIN and K. A. SEMENDJAJEW 1987 ¹aschenbuch der Mathematik. Frankfurt/Main:
Harri Deutsch; 23rd edition.

20. L. GAUL, S. HURLEBAUS and K. WILLNER 1999 in Proceedings of the International Modal Analysis
Conference IMAC XVII II, 1756}1762. Determination of material properties of plates from modal
ESPI measurements.


	1. INTRODUCTION
	2. EXACT SERIES SOLUTION
	Figure 1

	3. EXAMPLE
	TABLE 1
	TABLE 2

	4. CONCLUSIONS
	REFERENCES

